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Figure 1: The experimental data set, i.e. a centrifugal pump; and its three separated parts: diffuser, inlet and rotor.

ABSTRACT

Scientific simulations generate large irregular volumes with com-
plex geometry. In volume rendering, the efficiency of the ray
casting algorithms relies heavily on acceleration data structures to
achieve accurate visual representations at interactive rates. In this
paper, two acceleration structures are introduced to visualize a large
irregular volume on the GPU: (i) two-level cylindrical grid, and
(ii) cylindrical bounding volume hierarchy (BVH). With thorough
analysis and detailed experimental results, we demonstrate that the
cylindrical data structures can effectively store the hexahedral vol-
umes, reduce duplications, and increase ray casting performance.

1 INTRODUCTION

Scientific simulations tackle increasingly ambitious yet demanding
problems that require modeling of complex 3D geometries. Chal-
lenges arise in creating accurate visual representations of the result-
ing structures while maintaining interactive rates. The efficiency of
volume rendering techniques relies heavily on the careful design of
acceleration data structures. However, the bulk of research in volu-
metric data visualization has primarily focused on datasets that are
modeled as triangular meshes and/or rigid grid volumes. Such tech-
niques fall short in addressing issues introduced by more complex
primitive types, which are becoming more common in engineering
simulations.

In this paper, we set the focus on complex models, organized as
cells of irregular hexahedral volumes. We address the challenges
they pose to traditional spatial indexing structures, and propose
novel cylindrical structures that better serve the irregular nature of
the cells, especially in applications where the data cells roughly fol-
low a cylindrical contour. Namely, our contributions in this paper
are: (i) proposing two different cylindrical acceleration structures:
two-level cylindrical grid and cylindrical BVH; and (ii) presenting
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a thorough comparison between traditional spatial indexing struc-
tures and their cylindrical counterparts. To highlight the strengths
of the proposed techniques for target application domains, we ana-
lyze results of rendering a large centrifugal pump data set (as shown
in Figure 1), which is a cell-organized irregular hexahedral volume.
The proposed techniques do not rely on any feature of the hexa-
hedral cells, and thus can easily be applied to other irregular cell-
organized data set, such as tetrahedral volumes. We conclude that
the proposed cylindrical structures are especially effective in stor-
ing this type of irregular volumes with fewer duplications; and that
they improve the irregular volume visualization performance on the
GPU.

2 BACKGROUND AND RELATED WORK

In general, 3D volumes can be categorized into regular uniform
grids or irregular volumes. The regular uniform grids are 3D vol-
umes with samples evenly distributed in the space. Much research
has been done to efficiently render these volumes [1] and GPUs
have been used frequently to boost the rendering process [11]. Con-
trast to regular grid volume rendering, irregular volume visualiza-
tion [14, 16, 19, 21] is challenging and no routine approach or hard-
ware design is optimized for irregular volumes. The two most com-
mon forms of irregular volume data are: (i) array-organized and (ii)
cell-organized data [4]. Cell-organized data sets usually use a tetra-
hedron or a hexahedron for a cell element. In this paper, we tackle
the problem of irregular hexahedral volume visualization using a
ray casting algorithm on the GPU.

A naive ray traversal algorithm would test every primitive for
intersection. In practice, to lower the time complexity, spatial in-
dexing structures are used to accelerate the search and achieve sub-
linear performance. In general, these structures are either flat grids
or hierarchical trees. Uniform grids were first introduced to the
field of ray traversal in [3]. They were then improved in [8], and
later optimized for GPU accelerations in [10, 18]. There are var-
ious derivations of the grid structure. For example, Kalojanov et
al. [9] proposed the two-level grid to better serve unevenly dis-
tributed primitives. Guntury and Narayanan proposed the perspec-
tive grid [5] which attempts to increase ray coherence, and thus
improve the ray tracing performance. Xie et al. [23] introduced the
method of performing ray casting on spherical geodesic grids on
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GPUs to deal with large scale geoscience data. This paper presents
a two-level cylindrical grid. Different from the perspective grid [5]
which transforms the structure to fit the ray space, we transform
the grid to fit the geometry space. Grid-based structures are effi-
cient, but they have the drawback of being less flexible in adapt-
ing to the data distribution. Hierarchical structures including BSP
trees [7], kd-trees [2, 24], and BVHs [6, 12] provide more flexibil-
ity in space subdivision, while adapting cell size to primitive dis-
tribution. However, the hierarchical structure increases the cost of
traversal for neighborhood lookup, which can slow down rendering
performance. To address these issues, different splitting and termi-
nation criteria have been proposed [15]. The surface area heuristic
(SAH) [13, 22] has been widely adopted to optimize both for effi-
cient ray traversal.

3 DATA SET

This paper presents a case study using a large irregular hexahedral
volume, which was released in 2011 as the IEEE VIS contest data
set [20]. The data set is the simulation of a centrifugal pump. We
refer the interested reader to [17] for more information about the
simulation. Several scalar and vector fields’ values of the simula-
tion are recorded in 80 frames and these frames share the same 3D
geometry, which means although the scalar/vector values on each
vertex are changing every frame, the topology and vertex locations
are static in all 80 frames of the simulation. The volume consists of

Figure 2: A hexahedron and its index order.

three parts (Figure 1): a diffuser domain (part 1), an inlet domain
(part 2), and a rofor domain (part 3). Each part constitutes of a large
number of hexahedral cells, the structure of which is shown in Fig-
ure 2. The number of vertices and hexahedra in each part is listed
in Table 1.

Table 1: The number of vertices and hexahedra in each part.

1. diffuser 2. inlet 3. rotor
Number of Vertices 3,551,244 892,086 2,247,800
Number of Hexahedra 3,444,324 856,492 2,147,855

We use the ray casting algorithm to visualize one scalar field of
the volume. Rays are shot through the volume and samples are
evenly taken along the ray. For each sample, it finds the hexahe-
dron it is in. The contributions from the hexahedron’s eight vertices
to the sample are weighted according to their inverse distance. A
transfer function then maps the sample’s value to colors and the fi-
nal pixel’s color is derived by accumulating/blending color values
of samples on the ray from front to back. The key problem during
rendering is to efficiently locate which hexahedron a sample is in.
This sampling problem is further complicated by the large number
of hexahedra, significant variations in their sizes, and their uneven
distribution in space, as shown in Figure 3. In some regions, like the
blade area of part 3, hexahedra are very small and dense, whereas
hexahedra in the boundary area are relatively large and sparse. In
addition, the hexahedra are oriented to different directions.

» Parf 1: diffuser

S
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Figure 3: Primitives are unevenly distributed.

4 Two-LEVEL CYLINDRICAL GRID

Uniform grids [10] evenly subdivide the space and primitives are
recorded into each grid cell. We observe that most hexahedra of the
data set are distributed around the central line of the pump. In order
to make the grid cell fit for the primitive distribution, we transform
vertices into a cylindrical coordinate system and build a cylindrical
grid on the data set. The three dimensions in the cylindrical co-
ordinate system are Radius (R: distance to the longitudinal axis of
the cylinder), Angle (0: angle increases in counter-clockwise direc-
tion) and Height (H: the same as the Z dimension in the Cartesian
coordinate system). The bounding volume of primitives in the new
coordinate system is also changed (no longer a box), as shown in
Figure 4.

Z 1 H 4 ’\
longitudinal
axis
r
(0) > X 0 O axis R>
olar
y I axis

Cartesian Coordinates Cylindrical Coordinates

Uniform Grid

Cylindrical Grid

Figure 4: Uniform grid and cylindrical grid.



When constructing a uniform grid in the Cartesian coordinate
system, the following equations are often used to derive the resolu-
tion (i.e. Ry, Ry and R;) of the grid [10]:

AN AN AN
Rx=dx37a Ry:dy37» Rz:dz37- (D

where N is the number of primitives in each cubic cell with edge
lengths dy, dy and d;; and V is the volume of the cube (V = dydyd;).
In the cylindrical coordinate system, the volume of a grid cell (the

blue region in Figure 4) can be calculated by Mdrdh. So
the following equations can be used to derive the resolution of a
cylindrical grid:

AN
Ry =dp\| =~

de (27+dr) 3 N 3 AN
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The two-level grid [9] has been proposed in the Cartesian coordi-
nate system to address the “teapot in a stadium” problem. The first
level of the grid is a coarse division of the space, while the resolu-
tion of the second level grid depends on the primitive distribution.
To handle the unevenly distributed hexahedra, we derive the two-
level cylindrical grid.
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Figure 5: An example of the two-level cylindrical grid. The query
point Q is in the grid cell with a unified index (offset) 16. Hexahedra
recorded in this cell, i.e. hexahedron B and C, will be tested. Each el-
ementinthe Leaf Array is a pair of indices representing the range
of hexahedra indices in the corresponding grid cell. A cell is empty if
the start and end indices are the same, such as [1, 1).

Figure 5 shows an example of using this structure to search hex-
ahedra in a particular spatial region. The two-level cylindrical grid
operates similarly to its Cartesian counterpart. Each top-level cell
records the resolution of the corresponding second level and each
grid cell, either from the first level or the second level, has a unified
cell index. A query point Q first finds its top cell index by trun-
cation using its cylindrical coordinate values and the top-level grid
resolution. If the top-level cell is further subdivided into a low level
grid, the algorithm performs a second truncation step for Q. Finally
the cell offset can be found. For example, let us assume that Q trun-
cates to cell offset 16, as outlined in red in Figure 5. Now searching
the Leaf Array with this offset returns the start and end indices
of the Reference Array, which are [11, 13). This indicates

that the 111" and the 12" element (the 13™ element is not included)
of the Reference Array are the references of hexahedra in the
16" grid cell. Next, the program will test whether the query point
Q falls in any of the hexahedra in the grid cell, i.e. hexahedron B
and C in this example.

A major drawback with grids is the huge amount of primitive
duplications, as shown in the Reference Array of Figure 5.
These duplications are caused by two factors: First, when a hexa-
hedron overlaps with two grid cells, its index has to be duplicated
and recorded in both cells; Second, since the bounding volume of
primitives is used as a proxy when constructing the structure, more
false positive duplications are inevitable. In the cylindrical coordi-
nate system, the grid uses bounding volumes that tightly enclose the
primitives, thus reducing the number of duplications from the sec-
ond part. There are several factors that decide the rendering perfor-
mance, such as the transfer function, sampling distance and viewing
direction. The best performance indicator is the number of hexahe-
dra visited by all rays in a frame. Since the cylindrical grid has
less duplications, the rendering program should visit less hexahe-
dra during traversal, thus achieve better rendering performance. We
will demonstrate the results supporting this solution in Section 7.

5 CYLINDRICAL BVH

Grid structures suffer from a lack of flexibility in dividing the space,
which results in cells with highly diverse numbers of primitives.
Dense regions of the volume require high grid resolutions, whereas
sparse regions do not. Two-level grids, to some extent, mitigate the
problem. However, they are still not flexible enough to effectively
minimize the number of primitives in each cell, as primitives can
still be unevenly distributed in the second level. In Section 7.1, we
demonstrate that the maximum number of primitives in some grid
cells is still large even with a very high grid resolution.

On the other hand, hierarchical acceleration structures provide
more flexibility in subdividing the space and their node sizes adapt
to primitive distribution. Consequently, these structures can eftec-
tively reduce the number of primitives in leaf nodes. However, their
hierarchical depth incurs a heavier traversal cost during rendering.
BVHs create tightly enclosing volumes for model primitives and
organize them in a hierarchy. In BVHs, space overlap is possi-
ble, but duplication is avoided. During traversal, backtracking is
needed to accommodate for space overlap. We derive the cylindri-
cal BVH, as shown in Figure 6. In our implementation, we use the
centroids of primitives’ bounding volumes to cluster the primitives.
The surface area heuristic is used to choose the split plane. Since
the bounding volume of primitives is no longer a box, surface area
calculation is different. For Cartesian BVH, the surface area is:
2(dydy + dyd; + dd;), whereas for cylindrical BVH, the equation
changes to: (2r+d,)(d, +dp,)dg +2d,d),.

Figure 6: Cylindrical bounding volume hierarchy.

When traversing a BVH, visiting an internal node will decide
which child to visit next; whereas visiting a leaf node will perform
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intersection tests with primitives in the node. The cost of traversing
is incurred by both hierarchical traversal steps, and the number of
intersection tests with primitives in leaf nodes. We limit the num-
ber of primitives in leaf nodes to one to reduce the time spent on
primitive intersection tests. Since the BVH does not generate du-
plications, the number of hexahedra is the same as the number of
BVH leaf nodes. The cost of traversing BVHs can be quantified
by the number of internal and leaf nodes visited in a frame. We
will demonstrate these results of the cylindrical BVH in compari-
son with its Cartesian counterpart in Section 7.

6 LIMITATIONS

Some features of the cylindrical coordinate system pose challenges
when constructing acceleration structures. In this section, we dis-
cuss two major limitations.

6.1 Minimum Radius

With the eight vertices of a hexahedron, one can easily construct
the axis-aligned bounding box of a hexahedron in the Cartesian co-
ordinate system. However the same is not true in the cylindrical
coordinate system. To build the bounding volume for a hexahedron
in the cylindrical system, one needs the values of 7, Fimaxs Omin»
Omaxs hmin and hy,qx. The eight vertices of a hexahedron derive these
values, except 7y, The minimum distance of a hexahedron to the
longitudinal axis may be located on one edge or one face of the
hexahedron, as shown in Figure 7 A. To find the value of ry,;,, we
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B: Incorrect rmin, Omin, Omax

Figure 7: Incorrect minimum radius of cylindrical bounding volumes.

project the 12 edges of a hexahedron to the RO plane (i.e. the XY
plane in the Cartesian coordinate system). The longitudinal axis on
this plane is a point. The shortest distance between this point and
the 12 projected line segments is the required 7,,;, when construct-
ing the cylindrical bounding volume.

When primitives are on the longitudinal axis, ,,;, cannot be di-
rectly computed from the eight vertices of the hexahedron either. As
shown in Figure 7 B, the algorithm constructs an incorrect bound-
ing volume. This case can be detected by comparing the X and Y
Cartesian coordinates of the eight vertices and these coordinates of
the longitudinal axis. When building the cylindrical structures, we
need to change the r,,;, of these primitives’ bounding volumes to 0
and modify their 0 range to [0, 27). This problem happens in part
2 (the inlet domain) of the volume, and we successfully managed
this case with these modifications.

6.2 One Closed Dimension

In the Cartesian coordinate system, three dimensions are un-
bounded, i.e. coordinate values range from negative infinity to pos-
itive infinity. However, in the cylindrical coordinate system, one
dimension, i.e. 0, is closed and periodical. One may find a hexahe-
dron covers 0 ranging from 0.1 to 27 —0.1. Primitives on the polar
axis (Figure 8 A shows a 2D example, the axis will be a plane in 3D
case) have to be handled carefully.

A

B: Split Hexahedron

A: Incorrect Omin, Omax

Figure 8: One closed dimension in the cylindrical coordinate system.

The solution for this case is to duplicate the hexahedra. For the
experimental data set, primitives on the polar axis can be detected
when 6y,4x — Opin > . For two-level cylindrical grid, these primi-
tives will be put into cells on both sides of the polar axis. When
working with cylindrical BVH, we create two separated bounding
volumes for each of these primitives. In other words, the primitives
on the polar axis will be split by the axis (Figure 8 B). As a result,
some leaf nodes of the BVH will have different bounding volumes,
but the same primitive index.

7 RESULTS AND ANALYSIS

The results in this section are collected on an NVIDIA GeForce
GTX TITAN GPU with 6 GB device memory. The irregular vol-
umes are rendered with the ray casting algorithm at a resolution of
768x768. The 80 frames of the volume data share the same geom-
etry structure. So all acceleration structures discussed in this paper
can be built offline. Two important factors for evaluation are the
memory used for these structures and the rendering performance.

7.1 Two-Level Cylindrical Grid

Similar to [9], we set the A value for the top-level of the two-level
cylindrical grid to 1—16 A= 11—6). Table 2 shows the results when the
A value for the second level is 4 (A, =4). With detailed comparisons
to the two-level uniform grid in the Cartesian coordinate system, we
draw the following conclusions:

1. Two-level grids are not flexible enough to reduce the number
of primitives in a grid cell, as there are still cells containing
more than a hundred hexahedra in Table 2. The maximum
number of hexahedra in cylindrical grid cells is smaller than
that in Cartesian grid cells (the row labeled “Hexahedra Per
Cell”).

2. The equations used to derive the resolution of cylindrical grids
have similar performance as the equations for uniform grids,
as the numbers of grid cells in both structures are similar when
using the same A; and A, values (the row labeled “Number of
Grid Cells”).

3. Two-level cylindrical grid effectively reduces the amount of
primitives duplications and uses 69%~82% memory space of
its Cartesian counterpart (the row labeled “Number of Hexa-
hedra in Total” and “Memory Usage”).

4. The number of hexahedra visited by all rays in a frame is less
when using the two-level cylindrical grid and the rendering
program achieves 9%~36% speedups (the row labeled “Hex-
ahedra Visited in Total” and “Frame Per Second”).

The effect of different A, values has been demonstrated in Fig-
ure 9. A larger A, value leads to a finer grid resolution, as well
as a larger amount of duplications. The finer resolution of the grid
structures helps to improve the rendering performance. As shown



Table 2: The two-level cylindrical grid performs better than the two-
level Cartesian grid in terms of memory usage and rendering perfor-
mance (4, = 1—16 A, =4). Ratio=row(Cylindrical)/row(Cartesian).

1: diffuser 2: inlet 3: rotor
Top Grid Cartesian 88x88x28 36x36x42 113x113x11
Resolution Cylindrical 17x323x38 19x61x45  54x218x12
Hexahedra Cartesian 0~154 0~108 0~165
Per Cell Cylindrical 0~115 0~60 0~126
Number Cartesian 28,248,118 6,467,778 23,858,462
of Grid Cylindrical 28,190,022 6,938,619 22,535,140
Cells Ratio 1.00 1.07 0.94
Number of  Cartesian 234,495,582 41,774,805 229,291,796
Hexahedra Cylindrical 143,348,566 30,853,798 147,278,914
in Total Ratio 0.61 0.74 0.64
Memory Cartesian 1139.2 214.3 1083.7
Usage Cylindrical 782.6 175.3 753.0
(in MB) Ratio 0.69 0.82 0.69
Hexahedra Cartesian 16,624,898 21,469,156 15,108,410
Visited Cylindrical 9,743,971 12,620,823 13,512,711
in Total Ratio 0.59 0.59 0.89
Frame Cartesian 12.80 14.86 18.61
Per Cylindrical 17.39 17.96 20.24
Second Ratio 1.36 1.21 1.09

in the figure, both the memory usage and the rendering performance
increase as the A, value gets larger. The two-level cylindrical grid
always takes less memory space and achieves better rendering per-
formance than its Cartesian counterpart.
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Figure 9: Effects of different A, values. Row 1 to row 3 are the results
of: part 1 diffuser; part 2 inlet; and part 3 rotor.

7.2 Cylindrical BVH

As shown in Table 3, the cylindrical and Cartesian BVH have sim-
ilar tree levels in all three parts of the volume. Since the Cartesian
BVH does not generate any duplication and the termination criteria
is each node contains one hexahedron, the number of leaf nodes is
the same as the number of hexahedra in total. The cylindrical BVH
has a few duplications due to the limitation we discussed in Sec-
tion 6 (Figure 8). As a result, the number of BVH nodes and the
the number of hexahedra are a little larger than those of the Carte-
sian BVH. Since the number of duplications is small, there is no
noticeable difference in the memory usage.

Table 3: Results of the Cartesian and cylindrical BVH. Ra-
tio=row(Cylindrical)/row(Cartesian).
1: diffuser 2: inlet 3: rotor
Tree Cartesian 31 27 32
Levels Cylindrical 31 27 31
Number Cartesian 6,888,647 1,712,983 4,295,709
of BVH Cylindrical 6,907,577 1,725,155 4,312,835
Nodes Ratio 1.00 1.01 1.00
Number of Cartesian 3,444,324 856,492 2,147,855
Hexahedra Cylindrical 3,453,789 862,578 2,156,418
in Total Ratio 1.00 1.01 1.00
Memory Cartesian 309.5 76.9 193.0
Usage Cylindrical 310.5 717.5 193.7
(in MB) Ratio 1.00 1.00 1.00
Hexahedra 42.66 9.78 19.25
Surface Cartesian 87.13 14.21 41.07
Area Cylindrical 49.10 10.72 33.01
Ratio 0.56 0.75 0.80
Internal Cartesian 229,709,037 215,910,139 99,384,906
Nodes Cylindrical 125911,725 99,607,091 87,071,167
Visited Ratio 0.55 0.46 0.88
Leaf Cartesian 5,702,405 5,830,747 5,981,982
Nodes Cylindrical 3,638,955 3,967,473 5,148,690
Visited Ratio 0.64 0.68 0.86
Frame Cartesian 7.55 9.50 12.16
Per Cylindrical 11.37 16.53 13.92
Second Ratio 1.51 1.74 1.14

Although the cylindrical BVH generates a few duplications, its
rendering performance is better than the performance of the Carte-
sian BVH. The row of “Surface Area” in Table 3 shows the to-
tal surface area of: (i) all hexahedra; (ii) all Cartesian bounding
boxes; and (iii) all cylindrical bounding volumes. When calculat-
ing the surface area of cylindrical bounding volumes, we have taken
the duplications (due to the limitation shown in Figure 8) into con-
sideration. Although the cylindrical BVH has more hexahedra, the
surface area of all cylindrical volumes is less than (56%~80% of)
the total surface area from all Cartesian boxes. The results indi-
cate that the cylindrical bounding volumes more tightly enclose the
hexahedra. Therefore, a smaller number of internal and leaf nodes
are visited. For example, in part 1 (the diffuser domain), numerous
samples in the central region of the volume are quickly eliminated
with the condition r < r,;,, and the rendering performance of the
cylindrical BVH is 1.51 times faster than the Cartesian BVH.

7.3 Sampling Distance

The ray casting algorithm used in this paper does not traverse vol-
umes cell by cell. Instead, it evenly takes samples on cast rays and
accumulates samples’ contributions from front to back to derive the
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Figure 10: Effects of different sampling distances. Row 1 to row 3 are
the results of: part 1 diffuser; part 2 inlet; and part 3 rotor using two-
level Cartesian/cylindrical grids. Row 4 to row 6 are the results of part
1; part 2; and part 3 using Cartesian/cylindrical BVHs. The cylindrical
structures always visit fewer hexahedra/nodes and achieve higher
frame rates than their Cartesian counterparts.

final pixels’ color. Rays will be terminated when the correspond-
ing pixels are saturated. The distance between samples taken along
rays has a crucial impact on the rendering performance, as it de-
cides which grid cell or BVH node a ray will visit. The sampling
distances used for part 1, part 2 and part 3 are 1.12e—3, 3.8e—4 and
1.5e—3 when collecting the results in Table 2 and Table 3. To main-
tain the rendered image quality (under a fixed transfer function), the
sampling distance should be bounded within a certain range. Fig-
ure 10 gives more performance sets of the cylindrical structures and
their Cartesian counterparts when rendering with varying sampling
distances. In general, when the sampling distance increases, the
number of visited hexahedra (in two-level grids) and the number
of visited internal/leaf nodes (in BVHs) decrease. The rendering
performance improves with these numbers’ declines.

The top three rows (row 1 to row 3 are results of part 1, part 2
and part 3 when rendering with the two-level grids) of Figure 10
indicate that the two-level cylindrical grid always visits fewer hex-
ahedra in a frame. Therefore, it is always faster than the two-level
Cartesian grid. Compared to the Cartesian BVH, the bottom three
rows (performance of part 1, part 2 and part 3 when using BVHs) of
Figure 10 denote that the cylindrical BVH always traverses less in-
ternal and leaf nodes and it always performs better regardless of the
sampling distance. The results shown in this figure are consistent
with the results we have demonstrated in Table 2 and Table 3.

8 CONCLUSION

This paper tackles the problem of visualizing large irregular hex-
ahedral volumes on the GPU by adapting existing spatial indexing
structures to the cylindrical coordinate system. Specifically, our dis-
cussion focuses on two-level cylindrical grid and cylindrical BVH,
as they can handle unevenly distributed primitives in space. Two-
level cylindrical grid outperforms the traditional two-level grid in
effectively storing primitives and reducing duplications. The per-
formance increases, because the number of visited primitives is re-
duced. Compared to the traditional BVH, the cylindrical BVH uses
bounding volumes that tightly enclose primitives. Therefore, fewer
internal and leaf nodes of the BVH are visited and higher rendering
frame rates are achieved.

For different data sets, customized acceleration structures should
be considered to achieve the best performance. Although the Carte-
sian coordinate system is used extensively, it may not be the best
choice for all data sets with varying features. We hope that the
results we were able to achieve would inspire more research and
better customizations of acceleration structures to meet the increas-
ingly complex requirements of the data.
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