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Abstract—We present ImmunoExplorer, a web-based mul-
tivariate visualization environment that supports exploratory
analysis of experimental datasets typical in immunotherapy re-
search. Research advances in immuno-oncology have opened up
new frontiers for experimental and clinical research that aims
to understand the complex interactions between cancer and the
immune systems. Immunotherapy focuses on the development
of novel cancer therapies based on leveraging these interactions.
Extensive analysis of experimental datasets is required to
rigorously validate preclinical results and clinical outcomes to
design new therapies and to identify who will benefit from
them. Visualization is a crucial part of this analysis, given the
complexity, multidimensionality, and heterogeneity of the data
involved and the lack of automatic computational solutions to
derive patterns. In this work we first characterize the data
types and analysis tasks, and then present two visualization
techniques for comparative studies of various therapies. Finally,
we demonstrate the usefulness of the design through a case
study using a real dataset.

Keywords-Data visualization, multivariate analysis, design
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I. INTRODUCTION

The field of immuno-oncology aims to develop thera-

pies that harness the immune system to provide enduring

and adaptable cancer control. Combination immunotherapy

approaches have been studied extensively in animal mod-

els to help scientists understand complex networks in the

immune system, aiming to identify factors contributing to

the progression or rejection of tumors [1]. The goal of

the therapy-outcome relationship study is to identify the

analytes (biological pathways, co-regulated proteins) and

the multivariate relationships among them that yield more

effective therapies or therapy failure.

In doing this, extensive analysis of experimental data

is crucial to support hypothesis generation and testing of

the complex phenomena that govern this interplay. Com-

putational methods alone are not enough or do not exist

for this kind of analysis, due to high dimensionality and

heterogeneity of the data involved in the analysis. Hence

visualization methods are crucial to leverage the experts?

domain knowledge and to give them a more complete

understanding of the data and the underlying phenomena.

Specifically, scientists seek to establish correlations

among clusters of proteins working together as co-regulated

entities that may contribute to the progression or regression

of disease. The effect of these co-regulated proteins on

disease outcomes, such as tumor size and survival rates is

studied with different experimental parameters. For example,

different combination therapeutic components are mixed in

different ways and administered to the animals. The scien-

tists then seek to conduct multivariate regression analysis

to establish the correlation among the different therapeutic

alternatives, the measured analytes, and the observed out-

comes.

This work focuses on a web-based visualization environ-

ment, ImmunoExplorer (Figure 1), a multiview interactive

exploration environment for ranking and comparison studies

of immunotherapy data. The first contribution of this paper

is a characterization of the data used in immunotherapy

research. The second contribution is a characterization of

the analysis tasks of interest in this research domain into

three groups: association and differentiation pattern tasks,

distribution pattern tasks, and connectional pattern tasks.

This design of two main visual encoding methods consti-

tutes our third contribution. The two methods are parallel

coordinates and a sunburst view of therapy measurements.

The goal is to address two two major challenges scientists

face while conducting data analysis. To demonstrate how the

system works and addresses scientists’ tasks, we present a
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Figure 1: ImmunoExplorer: A web-based multi-view interface. From top to bottom and left to right: (1) parallel coordinates

showing nine therapies measurements (those names listed in the axes, e.g., IL-3) and related outcomes (tumor size and

survival), (2) links to the source data and help information, (3) interactive filtering by therapy names, and (4) interactive

filtering by each measurements in all therapies. The program is accessible online at http://pathrings.umbc.edu/tumor.

case study using a real experimental dataset that describes

how a domain expert performe analysis using the techniques

supported in ImmunoExplorer.

II. BACKGROUND AND RELATED WORK

A. Background and Data Used in Our Study

We worked with a real experimental dataset to measure

the outcome from nine different therapies containing 110

samples from a diseased (tumor) and a normal control

groups. The data contains three independent variables that

are categorical: sample, therapy, and organ. Dependent vari-

ables observed through the experiment include 32 quantita-

tive analytes that constitute protein levels, tumor size and

survival (whether or not the mice die).

The structure of immunotherapy experimental data can be

broken down into two main blocks. The first, which is the

analytes block, contains measurements taken simultaneously

for a number of cytokines at different stages of treatment.

Cytokines are proteins released by both immune and cancer

cells into either the tumor or lymph node microenvironment.

They recruit and reprogram other types of cells to condition

each microenvironment and are key factors in modulating the

immune response either against or favoring the tumor. The

interaction of cytokines, growth factors, and cells creates a

network largely responsible for the overall progression or

rejection of the tumor [2].

The second data block is the outcomes block. In an

experimental setting, tumor cells are injected in a population

of animals (here mice) and allowed to establish themselves

for a few days before therapy is begun. Tumor size and

other biomarkers are recorded at different times before and

during the treatment administration period. These outcomes

are at the heart of the analysis process. An overarching

analysis question is whether outcomes can be predicted by

the interaction of analytes, and whether a model can be

constructed for this prediction. Scientists usually seek to

collect as many outcomes as possible to learn about the

different effects of the applied treatment.

B. Multidimensional Data Visualization

Several application domains have benefited from mul-

tidimensional data visualizations. Work in clinical cohort

analysis, for instance, relies on techniques like contingency

arrays [3] and parallel coordinates [4] [5] to explore in-

teractions among multiple parameters. In biology, parallel

coordinates [6] and circular glyphs [7] are commonly used.

In addition to techniques addressing their high-dimensional

nature, visual analysis of multivariate data over time has

used creative glyph-based [8], [9]. We explore the de-

sign space and alternative visual encodings for multivari-

ate visualization techniques in Section V-A. Our design

choices combine strengths from existing approaches and
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develop new ones to offer a web-based environment for

effective exploration and analysis of experimental data in

immunotherapy research. A data and task characterization

have guided our design process.

C. Parallel Coordinates

Parallel coordinates are a widely adopted technique for

the visualization of multidimensional data. First appeared

in the literature in the context of nomography, they have

been used to provide overview and support data summa-

rization tasks [6]. They offer an effective visual encoding

for the identification of sets of data items exhibiting similar

characteristics, thus supporting visual clustering and pattern

association tasks [10]. In addition to association, parallel

coordinates make it possible to differentiate divergent behav-

ior and outliers through density estimation of raw data [11].

Furthermore, regression tasks aiming to predict the values of

dependent variables with respect to one or more independent

variables are supported by parallel coordinates, in the form

of visual regression [12], or through visualizing statistical

properties of regression models [13].

III. TASK CHARACTERIZATION

Our first contribution in this paper is a characterization

of analysis tasks in immunotherapy research. We are in-

terested in answering the high-level question: What is the

most effective treatment combination with maximal anti-

tumor efficacy? This high-level question translates into a

number of lower-level analysis tasks that scientists perform

to gain comprehension and insight on analytes of interest

and their effect on outcomes. Specifically, scientists look

for changes within tumors (e.g., in intratumoral cytokines

and chemokines) that distinguish treatments that induce

sustained tumor regression.

In the nutshell, scientists have two analysis challenges.

The first is to detect interactions among a multitude of

analytes in order to effectively identify clusters of co-

regulated proteins. This cluster identification requires under-

standing the interactions among a relatively large number

of parameters. Considering the effect of one analyte at a

time would yield inaccurate conclusions about the outcomes

because a one-factor-at-a-time approach cannot capture the

complex connectivity in the biological processes involved.

For example, when the scientist looks at different analytes,

s/he can tell whether a number of proteins are highly ex-

pressed and correlate with increased tumor size. A desirable

scenario can occur when the cluster of highly expressed

genes have one common entity in the upstream network in

the pathway diagram. The scientist can then conclude that

this entity is a regulator that may be targeted for inhibition

to decrease tumor size.

The second challenge is to establish cause-effect relation-

ships between the detected clusters of analytes and disease

outcomes. The goal here is to identify clusters that produce

the greatest tumor size reduction, thereby yielding highest

treatment efficacy. This challenge is complicated by the

multidimensional nature of both analytes and outcomes,

which renders computational methods insufficient for the

analysis. Furthermore, these cause-effect relationships must

be compared across different treatment groups and different

microenvironments.

To answer questions about these types of patterns, scien-

tists go through the following analysis stages: (1) overview

the raw data to gain trust in their results before conducting

further analysis, (2) build a qualitative understanding of data

clusters and pattern distributions, (3) build an understand-

ing of the interplay and probable cause-effect relationships

among analytes and outcomes in the data, and (4) use

domain knowledge and integrate external data sources to

achieve comprehension and construct predictive models.

Based on these two analysis challenges, we have identified

a set of visualization tasks summarized in Table I. These

tasks involve different pieces of data used by the domain

experts to generate and test hypotheses. Each task can be

viewed as a function where the inputs and outputs are

individual or a group of data components. To optimize

experts? use of information, appropriate visual encodings

must be provided for each type of pattern that is sought in

the data.

Tasks T1 to T3 are the principal building blocks of the

analysis. The main referential components in these tasks

are the samples collected in an experimental or clinical

setting, which are taken from multiple microenvironments

from different animals or patients, at different time steps.

In addition, each sample has a number of characteristics

(dependent variables) that constitute the observed analytes

and outcomes. Each sample is therefore regarded as a

multivariate data vector. These vectors act as inputs to the

analysis tasks. The output of these tasks takes the form

of association or differentiation patterns. An association

pattern unifies references into a whole that can be handled

together (e.g., a cluster). This association is typically based

on identical or close characteristics. A differentiation pattern,

on the other hand, distinguishes those references that remain

when other references have been united in an association

pattern [14].

In contrast to these sample-level association and differ-

entiation patterns, distribution patterns represent aggregate

information about the data, such as extrema and summary

statistics. These patterns are essential components of the

target cognitive model that the visualization aims to con-

struct in the expert’s brain to achieve comprehension. Tasks

T4 to T6 fall in this task category. Referential components

involved in these distribution patterns are typically groupings

of individual references (i.e., reference set). In immunother-

apy data, these groupings are typically based on the sample

site (microenvironment) and the type of therapy.

Finally, connectional patterns seek to establish cause-
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Table I: Pattern Search Task Types and Example Tasks

Task type Index Task

Association 1 Identify clusters of co-regulated cytokines
2 Identify co-regulated clusters that are inversely correlated with tumor size

Differentiation 3 Detect convergent, divergent, and outlier behavior in clinical or experimental samples

Distribution 4 Compare cytokine signatures across different microenvironments
5 Compare cytokine clusters across different therapies
6 Compare disease outcomes across different therapies

connectional 7 Identify cytokine signatures that can predict efficacy of each therapy
pattern 8 Identify tumor compartments that offer a predictive model of therapeutic efficacy

9 Characterize temporal behavior of tumor progression/regression within/across compartments
10 Identify upstream/downstream regulators that can be targeted for knock-down
11 Identify treatment combinations that elicit durable cures and sustained resistance mechanisms

effect relationships at a higher level of cognition. These

tasks require a high-level understanding of the data and the

underlying phenomena and rely on the user’s expertise and

integration of multiple data sources. The target connective

patterns constitute the final outcomes of the analysis. Tasks T

7 to T 11 belong to this group. Again, these high-level tasks

do not typically deal with individual data references. Rather,

aggregate information, clusters, and knowledge extracted

from the other two task categories act as input to these

connective tasks.

IV. DESIGN AIMS

In order to support these analysis tasks, we have identified

the following encoding aims:

• Aim 1. Support the detection of association and differ-

entiation patterns through data overview;

• Aim 2. Support the comprehension of distribution pat-

terns through data aggregates;

• Aim 3. Support the visual separation of the two main

data blocks involved in the analysis: analytes and out-

comes; And

• Aim 4. Provide interaction capabilities that leverage

the user’s domain knowledge to support construction of

more complete comprehension that consequently leads

to the identification of connective patterns.

V. IMMUNOEXPLORER

We have designed and implemented ImmunoExplorer, a

web-based visualization system that leverages the powers of

multiple coordinated views, brushing and linking, and inter-

active multivariate data visualization techniques to support

the analysis of experimental immunotherapy data.

A. Visual Encoding

To address the aims listed in Section III, we designed

two visual encoding approaches: parallel coordinates and

Sunburst chart. Parallel coordinates aim to visually encode

existing raw data in their original dimensions. ImmunoEx-

plorer offers a simultaneous overview of multiple variables

and their underlying patterns (Aim 1). Color is used to

encode different groups of samples. In Figure 1, the top row

where the parallel coordinates encoding is shown, samples

are grouped by therapies and microenvironments from which

they were obtained. By overlaying these approaches in a

parallel coordinates display, scientists can discern patterns

involving multiple analytes while also observing the effect

of these analytes on a multitude of outcomes. We note here

that in order for experts to trust a subsequent analysis, the

first thing they look for is an informative data overview. This

parallel coordinates help create a overview and establish a

level of trust in the data and what to expect from it.

The legend in Figure 1 (bottom row middle column) lists

the different sample categories and displays their distribution

in the elements currently shown in the parallel coordinates

display. Further, the legend acts as a filtering tool from which

the user can toggle on and off specific categories. The user

can select the categories of interest by selecting the names

on the legend to turn on and off the visual display of the

data in the parallel coordinates (Figure 2).

Contrast to association and differentiation patterns that

require an overview of raw unprocessed data, distribution

patterns are detected when aggregates and frequency mea-

sures are computed from the data. Among the most common

visual encodings that serve distribution patterns are small

multiples (of pie charts and bar charts). To support visual

separation between the two main data blocks involved in the

analysis (analytes and outcomes), we designed and imple-

mented a sunburst chart in a multiview interface (Aim 3).

Two such views are shown in Figure 3. An array of sunburst

glyphs is created in which each glyph represents one record

(i.e., sample) in the data. Bar lengths in the sunbursts are

proportional to the values observed for the corresponding

proteins’ regulation (i.e., analytes). To enable comprehension

of the different bars in each suburst and distinguish the

analytes they correspond to, labels are provided only on the

first element of the glyph array. Figure 4 shows a single

view of the first glyph element and accompanying labels.

Given such multiples, it is intuitive for scientists to decide

on the distribution of raw elements in the entire dataset as

well as the enrichment of additional information in selected

subsets. In ImmunoExplorer, a bar chart is linked to the

main parallel coordinates overview, and provides distribution

information about the entire dataset (Aim 2). As the expert
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Figure 2: Parallel coordinates view showing filtered samples taken from two different microenvironments (tumor and lymph

node) with two therapeutic combinations (AIPV and APV).

Figure 3: Sunburst array bubbles for lymph node samples (left) and tumor samples (right). Each glyph represents a sample

(a record) in the data. The vertical bar charts on the left of each bubble summarize tumor sizes (as outcomes) of every row

in the array.

Figure 4: The sunburst visualization of multivariate at-

tributes. The height of each burst is mapped to the scale

of that analytes measurement.

explores different subsets and/or clusters of data, a brush is

applied and linked to the bar chart to depict the enrichment

of specific characteristics in the brushed references.

There are two main advantages to this visualization ap-

proach: (1) separable visual encodings between analytes and

outcomes in the sunburst view make possible an overview of

cause-effect relationships, and (2) separable visual encodings

(glyphs) of individual data records make possible clutter-free

exploration of these individual entities.

The interaction capabilities in ImmunoExplorer are one

of its major strengths. The ability to reorder axes of paral-

lel coordinates is particularly useful in leveraging domain

expertise. For example, if the expert knows from theory

that a group of proteins are co-regulated, s/he can place

the axes for these proteins next to each other to generate a

less cluttered, more consistent overview. Further, brushing

and linking capabilities strongly support the expert?s under-

standing of the interactions among data components (Aim

4).To further support association and differentiation tasks,

data can be sorted in the glyph array to reveal patterns.

B. Implementation

The ImmunoExplorer prototype is implemented in Data-

Driven Documents (D3) [15]. The parallel coordinates view

interface is derived from an online tool [16]. The sunburst

view is implemented in a multiview bubbles interface that

lets scientists construct incremental views [17].

VI. CASE STUDY

We demonstrate the capabilities of ImmunoExplorer in

supporting the analysis tasks described in Section 4 using the

real experimental dataset that was generated and described in

Section 3. The data was generated by injecting tumor cells in

a population of mice and leaving them to establish for 8 days

before initiation of therapy. Initial tumor sizes captured at

that point in time fell in the range 40-60 mm2. Four different

484

Authorized licensed use limited to: City&#44; University of London. Downloaded on February 01,2024 at 09:22:55 UTC from IEEE Xplore.  Restrictions apply. 



Figure 5: Parallel coordinates view showing three different tumor size ranges selected with a brush. The regulation of MIP-1a,

RANTES, eotaxin, and IL-4 are inversely correlated with tumor size and can therefore be predictive of therapeutic efficacy.

Legends to the right of every brushed range depict the enrichment of the selected samples in different therapies.

therapeutic components were combined and administered:

A (anti-tumor antibody), I (MSA-IL-2), P (anti-PD-1), and

V (amphiphile vaccine). Luminex quantification of intratu-

moral cytokines and chemokines was used to collect the

data.

We began by inspecting the data overview provided by

the sunburst array and parallel coordinates. We noticed in

the sunburst array that two cytokines have consistently larger

spikes in many samples. Using this information, we moved

the axes of these cytokines next to one another in the parallel

coordinates view. We were able to see that the data traces

form an almost horizontal pattern between these axes. We

concluded that these cytokines are co-regulated.

Next, we began filtering and brushing the data to inspect

different patterns that emerged as different tumor size ranges

were selected. Again, forming an initial guess was served

by the sunburst array view, which sorts samples as rows

in the array (see Figure 3). In this case study, each row

in the glyph array consists of samples from a specific

therapeutic combination. Within each row, the samples are

sorted in descending order of tumor size, as can be seen in

the vertical bar charts at the beginning of each row. This

view made it easy for us to look at specific glyph columns

to see which cytokines have consistently large spikes in

the last column. This means that when these cytokines

are upregulated, the tumor size is consistently smaller. We

noticed such an inverse correlation between tumor size and

the following cytokines: MIP-1a, RANTES, eotaxin, and

IL-4. We suspected that these biomarkers are predictive of

treatment efficacy. We moved the axes of these analytes next

to the tumor size axis in parallel coordinates and created

a brush on tumor size. As we moved the brush up and

down the tumor size axis, we observed the behavior of these

cytokines, as shown in Figure 5.

Next, we looked for convergent and divergent cytokine

behavior in parallel coordinates, since data samples are

intuitively displayed as trajectories in this view. However,

detecting outlier behavior was not as intuitive as we had

anticipated in parallel coordinates, since outliers constituted

a relatively small number of samples. These few samples

of interest can be missed due to clutter. We decided that

the sunburst view can serve this purpose better, since it

provides a clutter-free view of the raw data. Using this

view, we immediately spotted the outliers in the lymph node

samples (Figure 3 (left)) under AIV and AIPV therapies.

Interestingly, we noticed that these outliers belong to the

same cytokine and are significantly larger than the rest of

the samples within similar tumor sizes. We then checked

the legends on the first glyph of the array to learn that these

spikes belong to the IFNg analyte. We took this observation

to the parallel coordinates view for further investigation,

brushed these two samples on the IFNg axis and observed

their interaction with other analytes. Figure 6 shows this

interaction.

In addition, we compared samples belonging to two spe-

cific therapy/microenvironment combinations: lymph-node

samples from subjects treated with APV and tumor samples

taken from subjects treated with AIPV. From this compari-

son, we determined cytokine signatures that distinguish the

two clusters, and thus can be used in predictive models

(Figure 2).

VII. DISCUSSION

One limitation of parallel coordinates is the lack of visual

distinction between the axes corresponding to the analytes

block and those in the outcomes block. This distinction

may be crucial for understanding cause-effect relationships

in experimental settings where the number of outcomes is

relatively large. For analysis scenarios involving only one

or two outcomes, however, the user can drag and move the

outcome axes and observe their interaction with the different

analytes.

Another known limitation of parallel coordinates is clutter.

Despite their strength in revealing clusters of convergent

and divergent behaviors, thereby supporting tasks targeting

association and differentiation patterns and satisfying Aim 1,

the study of individual data elements or groups of elements

(e.g., outliers) can be cumbersome, especially as the number
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Figure 6: Parallel coordinates view showing a brush selecting the 2 samples observed as outliers for the IFNg analyte with

AIV and AIPV therapies in the sunburst view shown in Figure3(left).

of records increases. The sunburst view of ImmunoExplorer

complements the capabilities of the parallel coordinates view

to accomplish this type of analysis.

The visual distinction between analytes and outcomes is

one of the main advantages of the sunburst array view. This

separation sets the stage for connectional pattern tasks to be

performed based on observations made by the expert about

the interplay of these two major data blocks. As the number

of outcomes involved in the analysis increases, however,

novel visual encoding alternatives are needed to establish

these complex multivariate correlations.

Integration of additional data sources is crucial for this

type of analysis. For example, the scientist may want to

seed a pathway diagram, selected from an online curated

database, around specific co-regulated genes of interest to

explore the upstream network and detect potential knock-

down genes. For example, the highly expressed genes can

have one common entity in the upstream network in the

pathway diagram: this entity is a regulator that can be

targeted and knocked down or inhibited. Such inhibition can

lead to down-regulation of the genes of interest. The scientist

will also want to find out what the literature says about the

regulatory inference layers in this network.

Another useful comparison is that performed over time.

A goal here is to tell medical specialists where and when

to perform a biopsy for a tumor. A low-level question

can be: when are tumors and lymph nodes similar? When

are they different? Further, temporal analysis leads to the

identification of regulatory patterns (what genes are up/down

at the same time). Some analytes may have very low baseline

but fluctuate significantly over time. Such fluctuations are

very important and ‘can lead to conclusions about profiles

and predictive capability of tumor/lymph-node microenvi-

ronments. This type of temporal analysis is the focus of our

future work.

VIII. CONCLUSION

Immunotherapy research is an exciting new area for

visualization, and the hope of inventing new therapies for

cancer by harnessing the immune system make this area

of research especially rewarding. Our discussion with our

collaborators suggested (1) the web-based system lets the

community analyze their data in a common environment,

(2) the parallel coordinates view and filtering can support

global pattern discovery to observe trend and finding extreme

values, and (3) the sunbursts view is a local technique which

has limited use in global pattern search but can support inter-

therapy comparisons of the quantitative measurements. In

the future, we will design new methods to reduce the visual

clutter of the parallel coordinates to reveal both global and

local patterns.

ACKNOWLEDGMENT

This work was supported in part by NSF DBI-1260795,

DBI-1147029, and EPS-0903234. The authors thank Katrina

Avery for her editorial support. Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the

views of the National Science Foundation.

REFERENCES

[1] A. Drake, N. S. Joshi, G. L. Szeto, E. F. Zhu, H. N.
Eisen, and D. J. Irvine, “Koch institute symposium on can-
cer immunology and immunotherapy,” Cancer Immunology
Research, vol. 1, no. 4, pp. 217–222, 2013.

[2] B.-C. Sheu, W.-C. Chang, C.-Y. Cheng, H.-H. Lin, D.-Y.
Chang, and S.-C. Huang, “Cytokine regulation networks in
the cancer microenvironment.” Frontiers in bioscience: a
journal and virtual library, vol. 13, pp. 6255–6268, 2007.

[3] P. Klemm, S. Oeltze-Jafra, K. Lawonn, K. Hegenscheid,
H. Völzke, and B. Preim, “Interactive visual analysis of
image-centric cohort study data,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 20, no. 12, pp. 1673–
1682, 2014.

[4] X. Dai and M. Gahegan, “Visualization based approach for
exploration of health data and risk factors,” in Proceedings
of the International Conference on GeoComputation, vol. 31,
2005.

[5] M. D. Steenwijk, J. Milles, M. Buchem, J. Reiber, and C. P.
Botha, “Integrated visual analysis for heterogeneous datasets
in cohort studies,” in IEEE VIS Workshop on Visual Analytics
in Health Care, vol. 3, 2010, p. 3.

486

Authorized licensed use limited to: City&#44; University of London. Downloaded on February 01,2024 at 09:22:55 UTC from IEEE Xplore.  Restrictions apply. 



[6] J. Heinrich and D. Weiskopf, “State of the art of parallel
coordinates,” Proceedings of Eurographics, STAR, pp. 95–
116, 2013.

[7] M. Krzywinski, J. Schein, I. Birol, J. Connors, R. Gascoyne,
D. Horsman, S. J. Jones, and M. A. Marra, “Circos: an
information aesthetic for comparative genomics,” Genome
research, vol. 19, no. 9, pp. 1639–1645, 2009.

[8] J. Fuchs, F. Fischer, F. Mansmann, E. Bertini, and P. Isenberg,
“Evaluation of alternative glyph designs for time series data in
a small multiple setting,” in Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems, 2013,
pp. 3237–3246.

[9] J. Fuchs, P. Isenberg, A. Bezerianos, F. Fischer, and E. Bertini,
“The influence of contour on similarity perception of star
glyphs,” IEEE Transactions on Visualization and Computer
Graphics, vol. 20, no. 12, pp. 2251–2260, Dec 2014.

[10] J. Heinrich and D. Weiskopf, “Continuous parallel coordi-
nates,” IEEE Transactions on Visualization and Computer
Graphics, vol. 15, no. 6, pp. 1531–1538, 2009.

[11] M. Novotny and H. Hauser, “Outlier-preserving focus+ con-
text visualization in parallel coordinates,” IEEE Transactions
on Visualization and Computer Graphics, vol. 12, no. 5, pp.
893–900, 2006.

[12] E. J. Wegman and Q. Luo, “High dimensional clustering using
parallel coordinates and the grand tour,” in Classification and
Knowledge Organization. Springer, 1997, pp. 93–101.

[13] C. A. Steed, J. E. Swan, T. Jankun-Kelly, and P. J. Fitz-
patrick, “Guided analysis of hurricane trends using statistical
processes integrated with interactive parallel coordinates,” in
IEEE Symposium on Visual Analytics Science and Technol-
ogy, 2009, pp. 19–26.

[14] N. Andrienko and G. Andrienko, Exploratory Analysis of Spa-
tial and Temporal Data: A Systematic Approach. Springer-
Verlag New York, Inc., 2005.

[15] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven doc-
uments,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, no. 12, pp. 2301–2309, 2011.

[16] K. Chang, Nutrient parallel coordinates.
http://bl.ocks.org/syntagmatic/3150059, August 2016 (last
accessed).

[17] A. Garbarino, L. Sun, Z. Garbarino, C. Schmidt, and J. Chen,
“Visgumbo, vismirror, viscut: interactive narrative strategies
for large biological pathway comparisons,” IEEE VIS Work-
shop on Exploring Graphs at Scale (EGAS), 2016.

487

Authorized licensed use limited to: City&#44; University of London. Downloaded on February 01,2024 at 09:22:55 UTC from IEEE Xplore.  Restrictions apply. 


